Modeling of solvent flow effects in enzyme catalysis under physiological conditions.
نویسندگان
چکیده
A stochastic model for the dynamics of enzymatic catalysis in explicit, effective solvents under physiological conditions is presented. Analytically-computed first passage time densities of a diffusing particle in a spherical shell with absorbing boundaries are combined with densities obtained from explicit simulation to obtain the overall probability density for the total reaction cycle time of the enzymatic system. The method is used to investigate the catalytic transfer of a phosphoryl group in a phosphoglycerate kinase-ADP-bis phosphoglycerate system, one of the steps of glycolysis. The direct simulation of the enzyme-substrate binding and reaction is carried out using an elastic network model for the protein, and the solvent motions are described by multiparticle collision dynamics which incorporates hydrodynamic flow effects. Systems where solvent-enzyme coupling occurs through explicit intermolecular interactions, as well as systems where this coupling is taken into account by including the protein and substrate in the multiparticle collision step, are investigated and compared with simulations where hydrodynamic coupling is absent. It is demonstrated that the flow of solvent particles around the enzyme facilitates the large-scale hinge motion of the enzyme with bound substrates, and has a significant impact on the shape of the probability densities and average time scales of substrate binding for substrates near the enzyme, the closure of the enzyme after binding, and the overall time of completion of the cycle.
منابع مشابه
Melamine trisulfonic acid as an efficient and reusable catalyst for the crossed-Aldol condensation of ketones and aldehydes under solvent-free conditions
Various types of aldehydes undergo crossed-Aldol condensation with ketones in the presence of melamine trisulfonic acid (MTSA) under solvent-free conditions. The reported method is mild, efficient and has the advantages such as using heterogeneous catalysis, short reaction times, high yields of the products and the recyclability of the catalyst.
متن کاملMelamine trisulfonic acid as an efficient and reusable catalyst for the crossed-Aldol condensation of ketones and aldehydes under solvent-free conditions
Various types of aldehydes undergo crossed-Aldol condensation with ketones in the presence of melamine trisulfonic acid (MTSA) under solvent-free conditions. The reported method is mild, efficient and has the advantages such as using heterogeneous catalysis, short reaction times, high yields of the products and the recyclability of the catalyst.
متن کامل" A novel and efficient synthesis of bisindolyl methanes with using silica-supported 3-(triethoxysilyl) propane-1-ammonium chloride as reusable catalyst under solvent free conditions
A facile and efficient synthesis of bis(indolyl)methanes derivatives (3a-u) was reported via a condensation reaction of aldehydes and indole in the presence of by silica-supported-3-(triethoxysilyl) propane-1-ammonium chloride catalysis under solvent free conditions. We studied the reaction in different conditions and optimized. The use of just 0.02 g of (silica gel-ammonium salt) is sufficient...
متن کاملSynthesis of benzimidazole derivatives using Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles both under solvent and solvent-free conditions
Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) was found to be a useful catalyst for the synthesis of benzimidazole derivatives from o-phenylenediamine and aldehydes under solvent and solvent-free conditions at 80 °C. This reaction affords the corresponding benzimidazole derivatives compared with the classical reactions this method consistently gives a high...
متن کاملNatural Kaolin supported sulfuric acid as an efficient catalyst for the preparation of 1, 1-diacetates under solvent-free conditions
A facile and efficient method for the preparation of 1,1-diacetates of aldehydes is improved. The acidified kaolin with sulfuric acid (2 % w/w) catalyzed 1,1-diacetates formation from aldehydes in solvent-free conditions. Both aromatic and aliphatic aldehydes gave high yields (85-95 %) of the corresponding 1, 1-diacetates. Advantages of this method are the use of inexpensive and selective catal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 136 20 شماره
صفحات -
تاریخ انتشار 2012